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Abstract

An experimental and numerical study of the motion of bubbles in inclined intermittent gas—liquid flow has been performed. A
knowledge of the velocity of bubbles is critical to the determination of the pressure drop and heat transfer characteristics in such
flows. Measurements show a transition in the dynamics of the bubble at a critical flow rate and this critical point has been shown to
be related to the drift velocity of a bubble in a stagnant liquid. A numerical investigation of bubble drift in stagnant liquids has been
performed with the use of the Volume of Fluid (VOF) technique. The results of the computations are shown to depend on the phase
interface to wall contact angle, however, with a suitable choice of this parameter the calculated bubble motion matches well with the
measured data. The bubble interface shape is also compared against data obtained with the use of a parallel wire conductance probe

to further validate the computational results. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

The motion of bubbles in a flowing liquid commonly occurs
in many industrial flow situations such as the production of
steam and water in geothermal and conventional thermal
power plants, refrigeration equipment and the core cooling of
nuclear reactors, with the largest bubbles occurring during
intermittent gas-liquid flows. This flow pattern occurs when
waves of a stratified liquid layer grow to reach the top of the
pipe and the gas propels a ‘slug’ of liquid along the pipe.
The resulting flow pattern consists of a series of liquid slugs
separated by bubbles that occupy almost the entire pipe cross-
section. Under some flow conditions the bubbles may be well-
formed Taylor type bubbles, however, at high flows they can
deviate from this shape with the front of the bubble centred
within the pipe (Bendiksen, 1984).

At non-zero inclinations intermittent flows are especially
common as the liquid is unable to remain stratified under such
conditions. Many applications involve flows inclined between
the horizontal and vertical and the drift velocity of bubbles has
been shown to behave quite strangely with changes in incli-
nation. Bonnecaze et al. (1971) were the first to explain the
observed maximum drift velocity of Taylor bubbles at inter-
mediate inclination angles. They reasoned that the velocity
along the bubble interface streamline is proportional to the
vertical distance from the stagnation point at the bubble nose.
Further, as the tube is declined from the vertical this distance
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first increases and then decreases as the inclination is lowered.
This gives a qualitative explanation, however, no successful
attempt has been made to quantify the bubble velocity as a
function of inclination angle.

Bendiksen (1984) has proposed a simple correlation for the
inclined bubble drift velocity based on the drift velocity in both
horizontal and vertical configurations. The velocity of Taylor
bubbles in vertical and horizontal pipes has been derived an-
alytically for potential flow and the effect of surface tension has
been studied experimentally by Zukoski (1966). Dumitrescu
(1943) and Davies and Taylor (1950) were the progenitors of
bubble rise theory in pipes, both applying potential flow theory
to the calculation of flow around the front of a vertical bubble.
The existence of a drift velocity component of bubbles in a
horizontal pipe during two-phase flow is less obvious. Some
experimental investigators such as Dukler and Hubbard (1975)
and Heywood and Richardson (1979) found that their bubble
velocity data did extend to zero as the flow velocity was de-
creased. The data of Mattar and Gregory (1974) and others,
however, shows that a non-zero horizontal drift velocity does
exist. Benjamin (1968) applied inviscid flow theory to the
problem of a bubble penetrating into a horizontal pipe opened
at one end and the resulting horizontal velocity compared well
with the drift data collected by Zukoski (1966). The literature
concerning the motion of bubbles in intermittent flows has
been summarized well by Fabre and Line (1992).

Recently, a number of computational studies have been
performed to simulate bubble motion in pipes such as the work
of Clarke and Issa (1997), Tomiyama et al. (1994), Rudman
(1998) and Mack et al. (1997). All these have been limited to
vertical flow, channel flow or zero gravity conditions where
symmetry can be exploited.
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Notations w velocity in z direction
X axial direction
C bubble velocity proportionality constant y transverse direction
D diameter z vertical direction
Fr Froude number p inclination angle to the horizontal
g gravitational acceleration A change in
n unit normal vector ) volume fraction
t time ) dimensionless surface tension
u velocity in x direction K interface curvature
Uy drift velocity ¢ wall contact an.gle
v velocity in y direction u dynamlc Viscosity
s bubble velocity I density ‘ .
Vr slug translational velocity o surface tension coefficient
2. Bubble velocity in a flowing liquid Vi = CVy + Uy, (1)

Measurement of bubble velocity was undertaken in two
pipes of 32 mm and 50 diameter that could be inclined to +10°
with air and water used as the two phases. Bubble velocity was
measured with conductance electrodes that served as triggers
to identify the front and rear of individual bubbles, as de-
scribed in Cook and Behnia (2000). The sampling rate was
adjusted to ensure that the error in the calculated velocity
was less than 3%. Additionally, the velocity of many bubbles
was averaged to further reduce the error. The flow rate of both
phases was metered accurately and gas expansion effects were
accounted for by measuring the local static pressure at the test
section where measurements were taken. Bubble velocity data
was obtained for both continuous intermittent flow and for
individual bubbles injected into the liquid flow, for a range of
overlapping flow rates, and no significant difference in the
bubble velocity data was detected.

The measured values of the bubble translational velocity as
a function of the flow mixture velocity are shown graphically
in Figs. 1-3 for both the 32 and 50 mm diameter pipes. It can
be readily seen that at each angle of inclination two separate
regions exist, for low flows the bubble velocity increases rela-
tively slowly with an increase in flow velocity, until a transition
occurs after which the bubble velocity increases more quickly
with mixture velocity. In both regions the bubble velocity
varies linearly with mixture velocity and can be expressed as
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Fig. 1. Bubble velocity vs mixture velocity (f = +5, D =32 mm).

where Uy is the drift velocity in a stagnant liquid.
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Fig. 2. Bubble velocity vs mixture velocity (f = +5°, D =50 mm).

T T
VT=1 -2Vm
e

*

Bubble / Slug Velocity Vr (m/s)

VT=1 OVm +Ud

| |
T T T

0 1 2 3 4 5 6 7 8
Mixture Velocity Vi, (m/s)

o = N W & 01 O N © © O

Fig. 3. Bubble velocity vs mixture velocity (f = +10°, D =32 mm).
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Bendiksen (1984) and Ferre (1979) have both observed
transitions similar to those observed here, however, Ferre
found two transitions at mixture Froude numbers of Fr,,, = 2.0
and 8.0, where

Vin
Fry, = (2)

A
Vo 8D
Bendiksen suggests that transition occurs at Fi,, = 3.5 for all
pipe diameters and inclinations. Additionally, the distribution
parameter, C, in Eq. (1) was found to have a constant value of
1.05 by Bendiksen, while Ferre observed a value of 1.1 and
Singh and Griffith (1970) report a value of 0.95.

The data displayed in Figs. 1-3 show a number of inter-
esting features. First, at velocities above the transition value
the bubble velocity is unaffected by any drift velocity compo-
nent and the velocity is accurately correlated by Vr = 1.2 V,,
for both the horizontal and inclined cases. This is consistent
with Bendiksen’s observation that at the critical Froude
number, the radial bubble nose position moves towards the
pipe centreline and the bubble propagation rate is controlled
by the local liquid velocity at its tip. Assuming a developed
velocity profile in the liquid ahead of the bubble then this
velocity will be close to 1.2 times the flow mixture velocity for
turbulent flows.

For flows below the critical value the bubble velocity was
found to depend on both the pipe diameter and inclination
angle. For the 32 mm diameter pipe, the data is best fitted by a
value of 1.0 for C with Uy found by extrapolating the data to
zero flow rate. The 50 mm diameter pipe data yielded a value
closer to C=0.95. Bendiksen (1984) found that the transition
occurred in stages, however, no evidence for this can be seen in
the data here.

The present data also suggests that the forces controlling
the bubble propagation rate alter quite suddenly at the critical
mixture Froude number. Below this flow rate the bubble ap-
pears to be controlled by buoyancy forces, with its velocity
approximately equal to the drift velocity in a stagnant liquid,
plus the average flow velocity. Above the critical mixture ve-
locity, the bubble is pulled along by the maximum liquid ve-
locity ahead of the bubble nose. The data shows that the
transition Froude number is not constant, as suggested by
Bendiksen (1984) and Ferre (1979), but increases with incli-
nation angle as the drift component increases. Paglianti et al.
(1996) conducted air—oil experiments and concluded that the
critical Froude number also depends on the properties of the
fluids used. Further, the results show that transition occurs at
considerably lower flows than suggested by Bendiksen (1984),
whose correlation implies transition at a mixture velocity of
2.45 m/s in the 50 mm diameter pipe, which is almost twice the
value found in the results presented here. The discrepancy
between the 32 mm data and Bendiksen’s correlation is less
significant, which is not surprising as Bendiksen’s results are
based on air-water data collected in 19 and 24 mm diameter
tubes. This indicates that specifying transition at a set Froude
number is not sufficient for all pipe diameters and inclinations,
and that the transition velocity for any pipe diameter and in-
clination is dependant on the bubble drift velocity.

The following more general correlation is proposed for the
bubble/slug velocity at all flow rates at low to moderate
inclinations, and is expected to be sufficiently accurate for
engineering calculations.

1.0V + Us
1.2V, '

Vr = max { 3)

The correlation proposed above implies that transition occurs
at

Vio = 5.0Uj, (4)

which is in good agreement with the data shown in Figs. 1-3.

2.1. Identification of intermittent flow sub-regimes

Most investigators of intermittent two phase flows such as
Paglianti et al. (1996), Gregory et al. (1978) and Kokal and
Stanislav (1989) have noted that many flow properties exhibit
very different characteristics depending on the total superficial
flow velocity. Generally, a distinction between elongated
bubble flow, that occurs at low velocities, and slug flow, oc-
curring at high velocities is made. Elongated bubble flow is
more prevalent in large diameter oil field pipelines and is
characterised by slow well-formed bubbles moving between
relatively unaerated slugs producing a relatively low pressure
gradient. Slug flow, however, is distinguished by a pronounced
mixing vortex at the front of the slug and consequent aeration
of the slug body. Interestingly, Fagundes-Netto et al. (1999)
have characterised the different regimes by the existence of an
abrupt or gradual rise in the liquid level behind the bubble.
Intermittent flow models need to correctly account for the
discontinuity in the various flow properties at the transition
between these sub-regimes if accurate modelling over the
whole intermittent regime is to be achieved.

The bubble velocity results of this section suggest that the
distinction between the flow sub-regimes is produced by the
change in bubble dynamics. That is, above the transition ve-
locity the fluid at the pipe centre moves at 1.2 times the mixture
velocity. If the bubble and slug were to move slower than this
value, it would imply the unrealistic situation that the fluid at
the centreline moves forward within the slug. At transition the
bubble nose moves from the top of the pipe to the pipe
centreline, as observed by Bendiksen (1984), and the bubble/
slug speed increases relative to the liquid film ahead of the slug.
This results in the development of the mixing vortex producing
the longer and more aerated slugs that are characteristic of
slug flow. Examination of Fig. 4 shows that the void fraction
of the slug body does indeed rapidly increase for mixture ve-
locities greater than the transition velocity defined in Eq. (4).
Measurements of slug holdup were made with a parallel wire
conductance probe as described in Cook and Behnia (1997).
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Fig. 4. Slug void fraction increase at transition (f =+10°, D=50
mm).
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Similar results were obtained at all angles of inclination and
for both pipe diameters.

Clearly, the transition in the velocity of the bubble and slug
unit proposed here in Egs. (3) and (4) has implications for all
the flow parameters, and appears to accurately define and
distinguish between the elongated bubble and slug flow sub-
regimes. The transition velocity is therefore very important in
the modelling of intermittent flow and as a consequence,
knowledge of the bubble drift velocity, on which the transition
depends, is necessary. Numerical and experimental investiga-
tions of the bubble drift velocity are the subject of the fol-
lowing sections.

3. Measurements of bubble drift velocity

The 32 and 50 mm diameter pipes attached to the inclinable
flow rig were filled with water and the return valve shut so as to
enable measurement of the velocity of long bubbles in a
stagnant liquid. Single bubbles were injected into the pipes
with the use of the solenoid valve attached to the gas circuit
and the bubble velocities were measured with the conductance
probes. Bubbles of various lengths were obtained by altering
the time the solenoid valve remained open, and the length of
the bubble was found to have no effect on the observed ve-
locity. The effect of fluid properties on the terminal bubble rise
velocity was investigated by filling the 50 mm acrylic pipe with
ethylene glycol and the shape of a rising bubble was also
measured during these experiments by collecting the voltage
output from the parallel wire conductance probe. At any
combination of inclination, diameter and fluid properties at
least 10 bubble speeds were measured and the spread of results
was consistently less than 1%.

The 16 m long rig was limited to a maximum angle of in-
clination of +10°, however, such a long pipe was not required
for the current series of experiments. So a new rig was em-
ployed to facilitate bubble drift velocity measurements at all
angles of inclination. This rig could be inclined from hori-
zontal to vertical in 15° increments and was designed to hold a
polycarbonate pipe of 2.9 m in length and 44.5 mm internal
diameter.

The data of Zukoski (1966) stand as the pre-eminent ex-
perimental work on inclined bubble motion and Zukoski’s
results show that the bubble Froude number defined by
Frg—— B (5)

(Ap/p)eD

is determined almost solely by the inclination angle and the
dimensionless surface tension defined by

o
2= ApeD” (6)
The three pipe diameters and two liquids used here allowed
dimensionless surface tensions over the range 17.5 x 107 to
7.4 x 1073 to be examined. The large difference in density be-
tween the liquid and gas phase meant the variation in the air
bubble density resulting from the reduction in pressure head as
the bubble rose, was not significant. The liquid properties are
the significant quantities and the nominal values are given
below.

Water@20°C p=998.2 0 =736 x 102 1= 0.001

(kg/m’) (N/m) (kg/m.s)
Ethylene p=1113 d=14.8x10? 1=0.021
glycol@20°C (kg/m’) (N/m) (kg/m.s)

The experimental results are summarised in Table 1. Good
agreement was found between the data collected in the present
experiments and those of Zukoski. Notably, all the results
show that the maximum drift velocity is attained at inclina-
tions between 30° and 45°.

4. Numerical simulation of bubble motion

A computational study of the drift of bubbles was con-
ducted in an attempt to remove the empiricism from the de-
termination of bubble drift velocity currently necessary when
applying intermittent flow models.

4.1. Numerical method

The effect of surface tension and tube inclination on the rise
velocity of a 3D bubble was modelled using a commercially
available computational fluid dynamics code. The interaction
of the immiscible gas and liquid phases was modelled with the
Volume of Fluid (VOF) algorithm of Hirt and Nichols (1981).
Rather than solving separate conservation equations for each
phase, the VOF technique requires only a single set of equa-
tions common to both phases to be solved, and the resulting
velocity field is shared between the phases. The transient
Cartesian mass and momentum conservation equations are
given by:

. Op  O(pu)  O(pv)  O(pw) _
(continuity) aﬁ o + o + o =0, (7)

Table 1
Inclined bubble rise velocity results
Case D (mm) B°) Liquid 2(x1073) Vs (m/s) Fry
1 32.0 5.0 Water 7.4 0.251 0.448
2 32.0 10.0 Water 7.4 0.262 0.468
3 50.0 5.0 Water 3.0 0.337 0.481
4 50.0 10.0 Water 3.0 0.350 0.50
5 50.0 5.0 Ethel. G. 1.75 0.335 0.479
6 50.0 10.0 Ethel. G. 1.75 0.346 0.494
7 44.5 15 Water 3.8 0.338 0.512
8 44.5 30 Water 3.8 0.359 0.544
9 44.5 45 Water 3.8 0.370 0.560
10 44.5 60 Water 3.8 0.339 0.513
11 44.5 75 Water 3.8 0.286 0.433
12 44.5 90 Water 3.8 0.229 0.347
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o(pu) _ Opuu)  O(puw)  d(pwu)
(x momentum) o + o 3 + s

_ep o[ ], 0
T T Tw M Jy Hay

0 [ Ou
+6_Z|:ﬂ§:| + pg: + F.. (8)

The y and z momentum equations are similar to Eq. (8) and
for the sake of brevity are not shown. The last two terms in Eq.
(8) are body force terms, the first of these represents the di-
rectional component of gravitational force and the last term is
an additional force term that results from interfacial surface
tension. The finite volume technique was used to solve the
governing equations on a structured grid. The equations are
discretized by integrating about each control volume, yielding
finite difference equations that conserve each quantity, mass
and momentum, over each control volume.

In Egs. (7) and (8), the fluid properties are written as de-
pendant variables despite calculations being performed for
incompressible laminar flow. Additionally, the equations in-
volve only one value of each of the fluid properties of density
and viscosity despite the use of these equations to solve the
flow field common to both phases. The value of each property
used in each control volume is determined by the following
relations:

p=(1=0)p +7p, )
and
= (1= + I, (10)

where ¢ is an additional variable introduced as part of the
VOF technique and is referred to as the volume fraction of the
secondary phase. Thus the property values used in each con-
trol volume calculation are a weighted average of the single
phase properties and vary in both space and time. For the two-
phase problem modelled here, only one volume fraction is
defined with 0 <9 <1, and the gas-liquid interface exists in a
control volume whose value of ¢ lies between 0 and 1. The
volume fraction must satisfy a continuity requirement given by
Eq. (11) and the interface motion is tracked by the solution to
this closure equation giving the evolution of the 9 field.

39 0(0u) 0(0v) O(bw)
a-" ox + oy + o =0. (11)

The VOF formulation requires special treatment for the
interpolation of volume fraction fluxes across control volume
faces near the interface. The finite volume solution technique
requires fluxes of each variable across control volume faces to
be calculated and balanced with source terms within the con-
trol volume itself. In this work, both the power-law and a
second-order-upwind scheme were employed to interpolate
face fluxes from neighbouring control volume values, and no
significant difference between the respective solutions was
found. When a cell is near an interface and 0 < ¢ < 1, special
care is taken in the calculation of the volume fraction fluxes to
avoid numerical diffusion and preserve a sharp definition of
the phase interface. The method employed by the VOF tech-
nique is a ‘donor-acceptor’ flux approximation whereby each
cell and its immediate neighbour is identified as either a donor
of volume fraction or an acceptor of the same amount of
volume fraction. The amount of fluid convected across a cell
boundary is determined by the gradient of the volume fraction
within each neighbouring cell. From this an estimate of the
interface shape is made and used in the computation of the flux
(Hirt and Nichols, 1981).

The effect of surface tension was modelled using the con-
tinuum surface force model of Brackbill et al. (1992). This

model interprets surface tension as a continuous, 3D effect
across an interface rather than as a boundary value condition
at the interface. The change in pressure between two fluids
across an interface is a function of the surface tension coeffi-
cient and the local curvature of the interface. In the model of
Brackbill et al. (1992), the interface curvature is found from
the volume fraction field. The normal to the interface is given
by the gradient of the volume fraction field:

n=vo (12)

and the curvature (k) is then the divergence of the unit normal
vector:

n
K=V .—. 13
0 )
The volume force acting on each interfacial control volume is
then found and is added to the momentum equation as the last
term in Eq. (8).

The flow of a bubble in an inclined tube necessitates the
introduction of a further complication due to the presence of
the tube wall. The wall affects the curvature of the interface for
cells near the boundary, and this is modelled by the imposition
of a fluid—wall contact angle, ¢, that is used to adjust the unit
normal vector in cells near the wall. The contact angle is not
simply a material property of the fluid, but also depends on the
smoothness and geometry of the wall and the rate of advance
of the interface (Kafka and Dussan, 1979). The choice of this
angle will be discussed later.

The 3D momentum, mass continuity, pressure and volume
fraction continuity equations were solved iteratively with
correction of the pressure field using the SIMPLE algorithm,
adapted for non-orthogonal body-fitted coordinates.

4.2. The computational grid

A number of different structured grids based on curvilinear
body-fitted coordinates were constructed to solve the five flow
equations, in a semi-cylindrical domain used to model the
passage of the air bubble up an inclined tube. The coarsest grid
used (251 x 21 x 11) is shown in Fig. 5 for a 32 mm diameter
tube of 1 m in length. It can be seen that the grid is somewhat
non-orthogonal in the ‘corners’ of the computational domain
as a result of using a body-fitted coordinate scheme on a cir-
cular geometry. This undesirable grid non-orthogonality or
‘skewness’ occurs in only very localised regions and is not

Fig. 5. Isometric view of the coarsest computational grid
(251 x 21 x 11).
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expected to have any adverse effect on the solution. None-
theless, the orthogonality of the grid was maximised by
smoothing the grid with an application of the Laplace equa-
tion, resulting in interior grid lines that curve and bulge.

The symmetric nature of the problem allowed the tube
centre to be modelled as a symmetry boundary and conse-
quently only one half of the tube needed to be modelled. All
other boundaries were modelled as stationary walls and no
inlet or outlet was necessary.

4.3. Time dependant solution procedure

The desired bubble velocity in a stagnant liquid was ob-
tained by tracking the time dependant evolution of the volume
fraction field along the inclined tube. Body forces were applied
to the x and y momentum equations to simulate the effect of
gravity at the specified angle of inclination, and an initial gas
bubble was placed at the bottom of the liquid filled tube by
specifying the initial volume fraction field. No attempt was
made to specify an accurate initial 3D bubble shape. Rather, a
rectangular bubble was placed in the computational domain
and the volume fraction field allowed to adjust over time until
a terminal bubble speed and shape was reached. The length of
the initial bubble was set such that a terminal bubble of about
200 mm in length was produced, and the length of the domain
was chosen so the bubble would take about 2 s of simulated
time to traverse the tube using a time step of typically 1073 s.

An alternative to this procedure would have been to model
the flow in a reference frame that moved with the bubble. This
would require an inlet and outlet to be specified and the pipe
wall to move at the bubble velocity, thus maintaining the
bubble stationary within the tube. This approach was used by
Tomiyama et al. (1994) for axisymmetric vertical bubble mo-
tion. However, an a priori knowledge of the bubble velocity is
required or else several calculations are required to find the
correct velocity such that the bubble is held stationary. The
approach adopted here required a larger computational
domain, however, only one run was required for each case
investigated.

4.4. Solution invariance

Before the results of the computations could be compared
with the experimental values of bubble rise velocity, a number
of checks were made to ensure that the model results were
independant of the grid structure and size, the convergence
criteria, the time step and the bubble length.

A number of different grids were generated with different
grid refinements in each direction, the most refined grid had

500,000 elements, and less than 1% variation was found in
the calculated drift velocity. The time step, the residual sum
convergence criteria and the bubble length were also varied
and again no significant affect on the bubble velocity was
found.

Calculations were performed for the laminar flow regime.
However, for pipes larger than 44.5 mm, the Reynolds number
of the liquid film under the bubble was found to be greater
than the laminar-turbulent transition value in single-phase
pipe flow. Such relatively high values occurred only in the
liquid film and were generally confined to a small region at the
rear of the bubble. While such localised turbulence was not
expected to affect the overall flow field significantly, one
computation was performed in which a turbulence model was
employed throughout the flow. In order to model such tur-
bulent flow the grid was altered to ensure that the first com-
putational node away from the wall was within the region
necessary to use a standard wall function. The two equation k-
e model with standard constant values derived from pipe flow
was used, and this added considerable numerical complexity
and cost to the computations. Despite this, the turbulent so-
lution was indistinguishable from the laminar case, confirming
that any localised turbulence would not alter the calculated
bubble velocity.

5. Numerical results

A total of 20 simulations were performed in order to
compare the numerically determined bubble speed and shape
with the data collected in the 32, 44.5 and 50 mm diameter
pipes. Both air-water and air-ethylene glycol fluid combina-
tions were investigated for inclination angles of 5-75° from the
horizontal. Additionally, simulations were performed for ex-
treme values of dimensionless surface tension in both a 10.6
mm and a 178.0 mm diameter pipe. These results were com-
pared with data collected for pipes of the same diameter by
Zukoski (1966).

Fig. 6 shows the time history of the volume fraction field at
the central plane of a 50 mm diameter, 1 m long pipe at 5°
angle of inclination. The initial rectangular gas bubble can be
seen to quickly develop into a typical bubble shape within
about 0.5 s. The speed of the bubble also reached a steady
value after about 0.5-1 s had elapsed, and this was found to be
true for all the cases investigated. The front of the bubble is
well rounded and its shape remained constant as the bubble
progressed, while the rear of the bubble consisted of a sloped
and undulating interface whose shape changed considerably
with time.

Fig. 6. Evolution of the volume fraction field over a two second interval from top left to bottom right (air-water, D =50 mm, = 5°).
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Fig. 7. Numerical result showing bubble shape and entrainment (air-water, D =44.5 mm, f§ =45°).

The shape of the rear of the bubble changed significantly
with inclination, becoming more flat and abrupt as the angle of
inclination was increased. This effect is shown in Fig. 7 for a
bubble at 45° in the 44.5 mm pipe. Interestingly, the abrupt
end to the bubble can be seen to induce the ejection of small
bubbles from its rear, thus capturing entrainment of dispersed
gas in the liquid behind the rising bubble. Sporadic entrain-
ment was observed in the results and was particularly pro-
nounced for highly inclined flows, however, the degree of
entrainment was observed to be very grid dependant.

5.1. Dynamic wall contact angle

The only empiricism to be introduced into the numerical
scheme involved the choice of the wall contact angle, ¢. This
angle is measured between the interface and the wall within the
liquid phase, and visual observations suggest that an acute angle
is appropriate as the bubble nose penetrates into the liquid. Fora
static situation the magnitude of the equilibrium contact angle is
a matter of thermodynamics and is ruled by Young’s equation
(Rillaerts and Joos, 1980). It is known that the contact angle is
different from its equilibrium value if the interface moves relative
to the solid surface and that both the speed of the interface and
the roughness of the wall affect this dynamic contact angle.
Many studies have been conducted to measure this quantity,
such as those of Kafka and Dussan (1979), however, a search of
the literature did not bare any information relevant to the rela-
tively high velocity bubbles investigated here.

A parametric study was performed to investigate the ap-
propriate value of ¢ to employ in the simulations, and the
sensitivity of the terminal bubble speed to the value used.
Typical results of such a study are shown in Fig. 8, from which
two conclusions can be drawn. First, the bubble velocity is not
highly sensitive to the value of used, provided an angle is
chosen that is not close to the extreme values of 0° or 90°.
Second, the best agreement between the predicted and mea-
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Fig. 8. Typical variation of calculated V3 with wall-contact angle.

sured bubble rise velocity was achieved with intermediate
contact angle values. These findings were found to be true,
regardless of the diameter of the pipe being simulated or the
inclination angle. Simulations were also compared with the
data collected using ethylene glycol as the liquid phase and
published data for air-acetone systems, and similar trends
were found. As a result of these findings all further simulations
were conducted with ¢ set equal to 45°.

5.2. Velocity results

The numerical calculations correctly predicted the variation
of the terminal rise velocity of a bubble with inclination angle
such that the maximum velocities were attained at inclinations
close to 45°. The effect of diameter was also accurately modelled
with an increase in diameter leading to an increase in the bubble
velocity. Quantitative comparisons between the calculated
bubble rising velocity and the data collected in this work as well
as the published results of Zukoski (1966) are shown in Fig. 9. It
can be seen that very good agreement was obtained for all the
pipe diameters from 10.6 to 178 mm. The error in the predicted
velocities was generally less than 1% for inclinations less than 30°
and the error attained a maximum of about 3-5% for flows at
45°, with the maximum error occurring for the 178 mm diameter
simulation at 45°. This result probably occurs because of the
spatially coarse grid in the large diameter pipe that may not have
been able to accurately capture the sharp curvature of the in-
terface very close to the pipe wall.

The results confirm the feasibility of using the VOF tech-
nique to predict bubble velocities in stagnant liquid in inclined
pipes with only one empirically determined input, namely the
contact angle ¢.

5.3. Bubble shape

The shape of the phase interface for bubbles in the 32 and
50 mm diameter pipes were measured at the vertical symmetry
plane of the pipe using the parallel wire conductance probe.
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Fig. 9. Comparison of measured and calculated bubble rise velocities.
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Fig. 11. Progression of transverse interface shape along length of
bubble. (D =44.5 mm, f=45°).

These measured shapes were compared against the shapes of
the bubbles predicted by the numerical calculations and a
typical example is shown in Fig. 10. This figure shows that the
calculated interface is initially lower than that measured,
however, for distances of greater than only about 40 mm aft of
the bubble nose, the agreement is good. Generally the agree-
ment between the measured and calculated bubble shapes is
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reasonably good and improves as the distance along the bub-
ble increases. Fig. 10 also shows waves along the interface that
were clearly observable visually, as has also been noted by
Fagundes-Netto et al. (1999), and moreover, an alternating
pattern of transverse waves could be seen whereby wave crests
at the pipe centreline occurred between troughs near the pipe
wall. The calculations correctly captured this 3D effect, which
is shown in the series of plots comprising Fig. 11. This figure
shows that near the nose of the bubble the interface is highly
concave, as would be expected. As the distance from the nose
is increased, however, the interface flattens and then at about
100 mm back from the bubble nose a convex interface is ap-
parent, whereby the height of the interface is greatest at the
centre. Thus a transverse wave pattern is set up that attenuates
along the length of the bubble.

Finally, it is interesting to investigate the calculated velocity
field shared by both phases, in and around a propagating
bubble. The velocity vectors displayed at every third compu-
tational cell around a bubble are shown in Fig. 12, and it can
be seen that a circulation zone is set-up within the gas bubble.
Also the vectors show that the presence of the bubble affects
the liquid only a very small distance ahead of it. Notably, a
maximum speed of 1.3 m/s was attained in the liquid film,
despite a bubble velocity of only about 0.4 m/s.

6. Conclusions

One-dimensional intermittent flow models are highly sen-
sitive to the value of the slug velocity chosen in the calcula-
tions, and the data presented shows a transition in this velocity
as the flow mixture velocity is increased. A general correlation
has been proposed for the slug velocity as well as a transition
criterion. Further, it is proposed that this transition, which is
produced by a change in the dynamics of the bubble, serves to
distinguish between the elongated bubble and the slug flow
regimes, and other intermittent flow parameters are shown to
dramatically change at this transition point.

The velocity transition is shown to be determined by the
value of the speed of a bubble in a stagnant liquid. This im-
portant quantity was measured in both a 32 and 50 mm di-
ameter pipe and in a 44.5 mm pipe inclinable up to 90°. The
results show the characteristic maximum velocity for inclina-
tions near 45° and agree well with previously published data.

The importance of the bubble drift velocity prompted an
attempt to numerically calculate this quantity by simulating
the motion of a bubble in a three-dimensional liquid filled
tube. The simulations were performed by solving the Navier—
Stokes equations on a structured grid and employing the VOF
technique to track the gas-liquid interface. Bubble drift ve-
locities were calculated for inclinations from 5° to 75°, and
over a wide range of dimensionless surface tensions. Com-
parison of the calculated results with the data collected both
here and from the literature, showed very good agreement for
all combinations of tube diameter, surface tension and incli-
nation. The numerical scheme also predicted the bubble shape
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Fig. 12. Calculated velocity distribution. (D =44.5 mm, §=45°).
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reasonably well and interestingly, captured the undulating
nature of the interface under a propagating bubble.
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